HCCMeshes: Hierarchical-Culling oriented Compact Meshes

Tae-Joon Kim!, Yongyoung Byun®, Yongjin Kim?, Bochang Moon', Seungyong Lee?, and Sung-Eui Yoon!

L KAIST

e

Figure 1: Applications: These figures show images of applications using our HCCMesh representations. From left, we show a Whitted-style ray tracing of the St. Matthew, photon
mapping on a transparent David model in the Sponza scene, a line-art style rendering of the Lucy model reflected on a sphere, and collision detection between the Lucy and a CAD

turbine model

1 Introduction

Ray tracing and collision detection are widely used for providing
high-quality visualizations and user interactions. In these algorithms,
we need to detect intersecting primitives between two input objects
(e.g., a ray and a 3D object in ray tracing and two 3D objects in
collision detection). In order to efficiently detect these intersecting
primitives, hierarchical traversal and culling by using bounding vol-
ume hierarchies (BVHs) are commonly used.

Due to advances of model acquisition and computer-aided design
techniques, massive models are easily generated these days. Such
massive models can consist of hundreds of millions of triangles and
thus use several gigabytes of memory. In addition, BVHs constructed
from these massive models can use additional gigabytes of memory
space. Although BVHs are intended to accelerate the performance
of applications, the additional memory requirement of using BVHs
can increase the working set size during the hierarchical traversal
and can increase the data fetching time from the disk, which could
negate the benefits of using BVHs. This high memory requirement
of a BVH is likely to cause more serious performance issues in the
coming years, given the well-known widening gap between the com-
putational speed and the data access speed on current commodity
hardware.

Only a few techniques have been proposed to design compact
mesh and BVH representations in order to reduce the data access
time and memory requirements during the hierarchical traversal.
None of them supports various tree structures of BVHs, while pro-
viding efficient hierarchical culling and a low runtime access over-
head. Furthermore, these prior techniques do not provide enough
compression ratios to handle large-scale models consisting of hun-
dreds of millions of triangles on commodity hardware [Kim et al.
2010].

2 Our Approach

To compute the HCCMesh representation, we first construct a BVH
from a mesh and then decompose the BVH into a single high-level
BVH and multiple low-level BVHs. In order to reduce the data
fetching time from external drives and to lower the memory require-
ment of meshes and BVHs, we compute our HCCMesh representa-
tion for each low-level BVH. Our HCCMesh representation has in-
core and out-of-core parts. The in-core HCCMesh representation, i-
HCCMesh, tightly integrates the mesh and BVH representations. We
compress i-HCCMeshes further to reduce the expensive data access
time from external drives for applications that run in an out-of-core
mode.

When a low-level BVH is requested at runtime, we fetch its cor-
responding 0-HCCMesh from an external drive, decompress it, and

Copyright is held by the author / owner(s).
SIGGRAPH 2010, Los Angeles, California, July 25 — 29, 2010.
ISBN 978-1-4503-0210-4/10/0007

2 POSTECH

|

R ©

7000 ——
===0Ori.

—o—NCom.
——HCCMesh

- log scale
>
o
T

o
T

Rendering Time (sec.)

1 1 I I I
1 2 4

8 16 32 o4 128 256 372
Model Size (M triangles)

Figure 2: Ray Tracing Time vs. Model Complexity: This graph shows the rendering
time with various model complexities of the St. Matthew model shown in Fig. 1. We
measure the performance of ray tracing with our HCCMesh, the original (Ori.), and
naively compressed (NCom.) representations.

store it in main memory as our i-HCCMesh representation which
efficiently supports the random hierarchical traversal. In order to en-
able a high overall performance improvement, our methods support
high compression ratios and fast decompression performance. If all
the i-HCCMeshes fit into main memory, the o-HCCMeshes are se-
quentially fetched and decompressed into the i-HCCMeshes as the
application begins. When all the o-HCCMeshes, but not all the i-
HCCMeshes, fit into main memory, we load the o-HCCMeshes to
main memory without any decompression and then decompress them
into the i-HCCMeshes when necessary, in order to remove the ex-
pensive disk I/O access at runtime. Otherwise, the o-HCCMeshes
are fetched on demand from the disk and decompressed into i-
HCCMeshes while using the LRU-based memory management.

3 Advantages of Our Approach

1. Low memory requirement: Our i-HCCMesh and o-
HCCMesh has 3.6:1 and 10.4:1 compression ratios on aver-
age over a naively quantized representation. This low memory
requirement reduces the data access time and the size of the
working set during the hierarchical traversal.

2. High performance improvement: We test our method on
ray tracing, photon mapping, non-photorealistic rendering, and
collision detection (Fig. 1) and compare our method over the
naively quantized representation. We can handle models ten
times larger in these applications without the expensive disk
I/O thrashing by using our representation (Fig. 2). In the case
when we can avoid the disk I/O thrashing, we can improve the
performance by up to two orders of magnitude.

References

KiMm, T.-J., MOON, B., KiM, D., AND YOON, S.-E. 2010. RACBVHs: Random-
accessible compressed bounding volume hierarchies. IEEE Trans. on Visualization
and Computer Graphics 16, 2, 273-286.



